
CUDNN LIBRARY

DU-06702-001_v6.5 | August 2014

User Guide

www.nvidia.com
cuDNN Library DU-06702-001_v6.5 | 2

www.nvidia.com
cuDNN Library DU-06702-001_v6.5 | 1

Chapter 1.
INTRODUCTION

NVIDIA® cuDNN is a GPU-accelerated library of primitives for deep neural networks.
It provides highly tuned implementations of routines arising frequently in DNN
applications:

‣ Convolution forward and backward, including cross-correlation
‣ Pooling forward and backward
‣ Softmax forward and backward
‣ Neuron activations forward and backward:

‣ Rectified linear (ReLU)
‣ Sigmoid
‣ Hyperbolic tangent (TANH)

‣ Tensor transformation functions

cuDNN's convolution routines aim for performance competitive with the fastest GEMM
(matrix multiply) based implementations of such routines while using significantly less
memory.

cuDNN features customizable data layouts, supporting flexible dimension ordering,
striding, and subregions for the 4D tensors used as inputs and outputs to all of its
routines. This flexibility allows easy integration into any neural network implementation
and avoids the input/output transposition steps sometimes necessary with GEMM-based
convolutions.

cuDNN offers a context-based API that allows for easy multithreading and (optional)
interoperability with CUDA streams.

www.nvidia.com
cuDNN Library DU-06702-001_v6.5 | 2

Chapter 2.
GENERAL DESCRIPTION

2.1. Programming Model
The cuDNN Library exposes a Host API but assumes that for operations using the GPU
the data is directly accessible from the device.

The application must initialize the handle to the cuDNN library context by calling the
cudnnCreate() function. Then, the handle is explicitly passed to every subsequent
library function call that operate on GPU data. Once the application finishes using the
library, it must call the function cudnnDestroy() to release the resources associated
with the cuDNN library context. This approach allows the user to explicitly control
the library setup when using multiple host threads and multiple GPUs. For example,
the application can use cudaSetDevice() to associate different devices with different
host threads and in each of those host threads it can initialize a unique handle to the
cuDNN library context, which will use the particular device associated with that
host thread. Then, the cuDNN library function calls made with different handle will
automatically dispatch the computation to different devices. The device associated
with a particular cuDNN context is assumed to remain unchanged between the
corresponding cudnnCreate() and cudnnDestroy() calls. In order for the cuDNN
library to use a different device within the same host thread, the application must set the
new device to be used by calling cudaSetDevice() and then create another cuDNN
context, which will be associated with the new device, by calling cudnnCreate().

2.2. Thread Safety
The library is thread safe and its functions can be called from multiple host threads,
even with the same handle. When multiple threads share the same handle, extreme care
needs to be taken when the handle configuration is changed because that change will
affect potentially subsequent cuDNN calls in all threads. It is even more true for the
destruction of the handle. So it is not recommended that multiple threads share the same
cuDNN handle.

General Description

www.nvidia.com
cuDNN Library DU-06702-001_v6.5 | 3

2.3. Reproducibility
By design, most of cuDNN API routines from a given version generate the same bit-
wise results at every run when executed on GPUs with the same architecture and
the same number of SMs. However, bit-wise reproducibility is not guaranteed across
versions, as the implementation of a given routine may change. With the current release,
the following routines do not guarantee reproducibility because they use atomic add
operations:

‣ cudnnConvolutionBackwardFilter
‣ cudnnConvolutionBackwardData

2.4. Requirements
cuDNN supports NVIDIA GPUs of compute capability 3.0 and higher and requires an
NVIDIA Driver compatible with CUDA Toolkit 6.5.

www.nvidia.com
cuDNN Library DU-06702-001_v6.5 | 4

Chapter 3.
CUDNN DATATYPES REFERENCE

This chapter describes all the types and enums of the cuDNN library API.

3.1. cudnnHandle_t
cudnnHandle_t is a pointer to an opaque structure holding the cuDNN library context.
The cuDNN library context must be created using cudnnCreate() and the returned
handle must be passed to all subsequent library function calls. The context should be
destroyed at the end using cudnnDestroy(). The context is associated with only one
GPU device, the current device at the time of the call to cudnnCreate(). However
multiple contexts can be created on the same GPU device.

3.2. cudnnStatus_t
cudnnStatus_t is an enumerated type used for function status returns. All cuDNN
library functions return their status, which can be one of the following values:

Value Meaning

CUDNN_STATUS_SUCCESS The operation completed successfully.

CUDNN_STATUS_NOT_INITIALIZED The cuDNN library was not initialized properly.
This error is usually returned when a call to
cudnnCreate() fails or when cudnnCreate()
has not been called prior to calling another cuDNN
routine. In the former case, it is usually due
to an error in the CUDA Runtime API called by
cudnnCreate() or by an error in the hardware
setup.

CUDNN_STATUS_ALLOC_FAILED Resource allocation failed inside the cuDNN
library. This is usually caused by an internal
cudaMalloc() failure.

To correct: prior to the function call, deallocate
previously allocated memory as much as possible.

cuDNN Datatypes Reference

www.nvidia.com
cuDNN Library DU-06702-001_v6.5 | 5

Value Meaning

CUDNN_STATUS_BAD_PARAM An incorrect value or parameter was passed to the
function.

To correct: ensure that all the parameters being
passed have valid values.

CUDNN_STATUS_ARCH_MISMATCH The function requires a feature absent from
the current GPU device. Note that cuDNN only
supports devices with compute capabilities greater
than or equal to 3.0.

To correct: compile and run the application on a
device with appropriate compute capability.

CUDNN_STATUS_MAPPING_ERROR An access to GPU memory space failed, which is
usually caused by a failure to bind a texture.

To correct: prior to the function call, unbind any
previously bound textures.

Otherwise, this may indicate an internal error/bug
in the library.

CUDNN_STATUS_EXECUTION_FAILED The GPU program failed to execute. This is usually
caused by a failure to launch some cuDNN kernel
on the GPU, which can occur for multiple reasons.

To correct: check that the hardware, an
appropriate version of the driver, and the cuDNN
library are correctly installed.

Otherwise, this may indicate a internal error/bug
in the library.

CUDNN_STATUS_INTERNAL_ERROR An internal cuDNN operation failed.

CUDNN_STATUS_NOT_SUPPORTED The functionality requested is not presently
supported by cuDNN.

CUDNN_STATUS_LICENSE_ERROR The functionality requested requires some license
and an error was detected when trying to check
the current licensing. This error can happen if
the license is not present or is expired or if the
environment variable NVIDIA_LICENSE_FILE is not
set properly.

3.3. cudnnTensor4dDescriptor_t
cudnnCreateTensor4dDescriptor_t is a pointer to an opaque structure holding
the description of a generic 4D dataset. cudnnCreateTensor4dDescriptor()
is used to create one instance, and cudnnSetTensor4dDescriptor() or
cudnnSetTensor4dDescriptorEx() must be used to initialize this instance.

cuDNN Datatypes Reference

www.nvidia.com
cuDNN Library DU-06702-001_v6.5 | 6

3.4. cudnnFilterDescriptor_t
cudnnFilterDescriptor_t is a pointer to an opaque structure holding the description
of a filter dataset. cudnnCreateFilterDescriptor() is used to create one instance,
and cudnnSetFilterDescriptor() must be used to initialize this instance.

3.5. cudnnConvolutionDescriptor_t
cudnnConvolutionDescriptor_t is a pointer to an opaque structure holding the
description of a convolution operation. cudnnCreateFilterDescriptor() is used to
create one instance, and cudnnSetFilterDescriptor() must be used to initialize this
instance.

3.6. cudnnPoolingDescriptor_t
cudnnPoolingDescriptor_t is a pointer to an opaque structure holding the
description of a pooling operation. cudnnCreatePoolingDescriptor() is used to
create one instance, and cudnnSetPoolingDescriptor() must be used to initialize
this instance.

3.7. cudnnDataType_t
cudnnDataType_t is an enumerated type indicating the data type to which a tensor
descriptor or filter descriptor refers.

Value Meaning

CUDNN_DATA_FLOAT The data is 32-bit single-precision floating point
(float).

CUDNN_DATA_DOUBLE The data is 64-bit double-precision floating point
(double).

3.8. cudnnTensorFormat_t
cudnnTensorFormat_t is an enumerated type used by
cudnnSetTensor4dDescriptor() to create a tensor with a pre-defined layout.

Value Meaning

CUDNN_TENSOR_NCHW This tensor format specifies that the data is laid
out in the following order: image, features map,
rows, columns. The strides are implicitly defined
in such a way that the data are contiguous in
memory with no padding between images, feature
maps, rows, and columns; the columns are the

cuDNN Datatypes Reference

www.nvidia.com
cuDNN Library DU-06702-001_v6.5 | 7

Value Meaning

inner dimension and the images are the outermost
dimension.

CUDNN_TENSOR_NHWC This tensor format specifies that the data is laid
out in the following order: image, rows, columns,
features maps. The strides are implicitly defined in
such a way that the data are contiguous in memory
with no padding between images, rows, columns,
and features maps; the feature maps are the
inner dimension and the images are the outermost
dimension.

3.9. cudnnAddMode_t
cudnnAddMode_t is an enumerated type used by cudnnAddTensor4d() to specify how
a bias tensor is added to an input/output tensor.

Value Meaning

CUDNN_ADD_IMAGE or CUDNN_ADD_SAME_HW In this mode, the bias tensor is defined as one
image with one feature map. This image will be
added to every feature map of every image of the
input/output tensor.

CUDNN_ADD_FEATURE_MAP or
CUDNN_ADD_SAME_CHW

In this mode, the bias tensor is defined as one
image with multiple feature maps. This image
will be added to every image of the input/output
tensor.

CUDNN_ADD_SAME_C In this mode, the bias tensor is defined as one
image with multiple feature maps of dimension
1x1; it can be seen as an vector of feature maps.
Each feature map of the bias tensor will be added
to the corresponding feature map of all height-by-
width pixels of every image of the input/output
tensor.

CUDNN_ADD_FULL_TENSOR In this mode, the bias tensor has the same
dimensions as the input/output tensor. It will be
added point-wise to the input/output tensor.

3.10. cudnnConvolutionMode_t
cudnnConvolutionMode_t is an enumerated type used by
cudnnSetConvolutionDescriptor() to configure a convolution descriptor. The
filter used for the convolution can be applied in two different ways, corresponding
mathematically to a convolution or to a cross-correlation. (A cross-correlation is
equivalent to a convolution with its filter rotated by 180 degrees.)

cuDNN Datatypes Reference

www.nvidia.com
cuDNN Library DU-06702-001_v6.5 | 8

Value Meaning

CUDNN_CONVOLUTION In this mode, a convolution operation will be done
when applying the filter to the images.

CUDNN_CROSS_CORRELATION In this mode, a cross-correlation operation will be
done when applying the filter to the images.

3.11. cudnnConvolutionPath_t
cudnnConvolutionPath_t is an enumerated type used by the helper routine
cudnnGetOutputTensor4dDim() to select the results to output.

Value Meaning

CUDNN_CONVOLUTION_FWD cudnnGetOutputTensor4dDim() will return
dimensions related to the output tensor of the
forward convolution.

CUDNN_CONVOLUTION_WEIGHT_GRAD cudnnGetOutputTensor4dDim() will return the
dimensions of the output filter produced while
computing the gradients, which is part of the
backward convolution.

CUDNN_CONVOLUTION_DATA_GRAD cudnnGetOutputTensor4dDim() will return the
dimensions of the output tensor produced while
computing the gradients, which is part of the
backward convolution.

3.12. cudnnAccumulateResult_t
cudnnAccumulateResult_t is an enumerated type used by
cudnnConvolutionForward(), cudnnConvolutionBackwardFilter() and
cudnnConvolutionBackwardData() to specify whether those routines accumulate
their results with the output tensor or simply write them to it, overwriting the previous
value.

Value Meaning

CUDNN_RESULT_ACCUMULATE The results are accumulated with (added to the
previous value of) the output tensor.

CUDNN_RESULT_NO_ACCUMULATE The results overwrite the output tensor.

3.13. cudnnSoftmaxAlgorithm_t
cudnnSoftmaxAlgorithm_t is used to select an implementation of the softmax
function used in cudnnSoftmaxForward() and cudnnSoftmaxBackward().

cuDNN Datatypes Reference

www.nvidia.com
cuDNN Library DU-06702-001_v6.5 | 9

Value Meaning

CUDNN_SOFTMAX_FAST This implementation applies the straightforward
softmax operation.

CUDNN_SOFTMAX_ACCURATE This implementation applies a scaling to the input
to avoid any potential overflow.

3.14. cudnnSoftmaxMode_t
cudnnSoftmaxMode_t is used to select over which data the cudnnSoftmaxForward()
and cudnnSoftmaxBackward() are computing their results.

Value Meaning

CUDNN_SOFTMAX_MODE_INSTANCE The softmax operation is computed per image (N)
across the dimensions C,H,W.

CUDNN_SOFTMAX_MODE_CHANNEL The softmax operation is computed per spatial
location (H,W) per image (N) across the dimension
C.

3.15. cudnnPoolingMode_t
cudnnPoolingMode_t is an enumerated type passed to
cudnnSetPoolingDescriptor() to select the pooling method to be used by
cudnnPoolingForward() and cudnnPoolingBackward().

Value Meaning

CUDNN_POOLING_MAX The maximum value inside the pooling window will
be used.

CUDNN_POOLING_AVERAGE The values inside the pooling window will be
averaged.

3.16. cudnnActivationMode_t
cudnnActivationMode_t is an enumerated type used to select the neuron activation
function used in cudnnActivationForward() and cudnnActivationBackward().

Value Meaning

CUDNN_ACTIVATION_SIGMOID Selects the sigmoid function.

CUDNN_ACTIVATION_RELU Selects the rectified linear function.

CUDNN_ACTIVATION_TANH Selects the hyperbolic tangent function.

cuDNN Datatypes Reference

www.nvidia.com
cuDNN Library DU-06702-001_v6.5 | 10

3.17. cudnnDataType_t
cudnnDataType_t is an enumerated type indicating the data type to which a tensor
descriptor or filter descriptor refers.

Value Meaning

CUDNN_DATA_FLOAT The data is 32-bit single-precision floating point
(float).

CUDNN_DATA_DOUBLE The data is 64-bit double-precision floating point
(double).

www.nvidia.com
cuDNN Library DU-06702-001_v6.5 | 11

Chapter 4.
CUDNN API REFERENCE

This chapter describes the API of all the routines of the cuDNN library.

4.1. cudnnCreate
cudnnStatus_t cudnnCreate(cudnnHandle_t *handle)

This function initializes the cuDNN library and creates a handle to an opaque
structure holding the cuDNN library context. It allocates hardware resources on
the host and device and must be called prior to making any other cuDNN library
calls. The cuDNN library context is tied to the current CUDA device. To use the
library on multiple devices, one cuDNN handle needs to be created for each device.
For a given device, multiple cuDNN handles with different configurations (e.g.,
different current CUDA streams) may be created. Because cudnnCreate allocates
some internal resources, the release of those resources by calling cudnnDestroy will
implicitly call cudaDeviceSynchronize; therefore, the recommended best practice
is to call cudnnCreate/cudnnDestroy outside of performance-critical code paths.
For multithreaded applications that use the same device from different threads, the
recommended programming model is to create one (or a few, as is convenient) cuDNN
handle(s) per thread and use that cuDNN handle for the entire life of the thread.

Return Value Meaning

CUDNN_STATUS_SUCCESS The initialization succeeded.

CUDNN_STATUS_NOT_INITIALIZED CUDA Runtime API initialization failed.

CUDNN_STATUS_ALLOC_FAILED The resources could not be allocated.

4.2. cudnnDestroy
cudnnStatus_t cudnnDestroy(cudnnHandle_t handle)

This function releases hardware resources used by the cuDNN library. This function
is usually the last call with a particular handle to the cuDNN library. Because
cudnnCreate allocates some internal resources, the release of those resources by

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v6.5 | 12

calling cudnnDestroy will implicitly call cudaDeviceSynchronize; therefore,
the recommended best practice is to call cudnnCreate/cudnnDestroy outside of
performance-critical code paths.

Return Value Meaning

CUDNN_STATUS_SUCCESS The cuDNN context destruction was successful.

CUDNN_STATUS_NOT_INITIALIZED The library was not initialized.

4.3. cudnnSetStream
cudnnStatus_t cudnnSetStream(cudnnHandle_t handle, cudaStream_t streamId)

This function sets the cuDNN library stream, which will be used to execute all
subsequent calls to the cuDNN library functions with that particular handle. If the
cuDNN library stream is not set, all kernels use the default (NULL) stream. In particular,
this routine can be used to change the stream between kernel launches and then to reset
the cuDNN library stream back to NULL.

Return Value Meaning

CUDNN_STATUS_SUCCESS The stream was set successfully.

4.4. cudnnGetStream
cudnnStatus_t cudnnGetStream(cudnnHandle_t handle, cudaStream_t *streamId)

This function gets the cuDNN library stream, which is being used to execute all calls to
the cuDNN library functions. If the cuDNN library stream is not set, all kernels use the
default NULL stream.

Return Value Meaning

CUDNN_STATUS_SUCCESS The stream was returned successfully.

4.5. cudnnCreateTensor4dDescriptor
cudnnStatus_t cudnnCreateTensor4dDescriptor(cudnnTensor4dDescriptor_t
 *tensorDesc)

This function creates a Tensor4D descriptor object by allocating the memory needed to
hold its opaque structure.

Return Value Meaning

CUDNN_STATUS_SUCCESS The object was created successfully.

CUDNN_STATUS_ALLOC_FAILED The resources could not be allocated.

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v6.5 | 13

4.6. cudnnSetTensor4dDescriptor
cudnnStatus_t
cudnnSetTensor4dDescriptor(cudnnTensor4dDescriptor_t tensorDesc,
 cudnnTensorFormat_t format,
 cudnnDataType_t dataType,
 int n,
 int c,
 int h,
 int w)

This function initializes a previously created Tensor4D descriptor object. The strides of
the four dimensions are inferred from the format parameter and set in such a way that
the data is contiguous in memory with no padding between dimensions.

Param In/out Meaning

tensorDesc input/
output

Handle to a previously created tensor descriptor.

format input Type of format.

datatype input Data type.

n input Number of images.

c input Number of feature maps per image.

h input Height of each feature map.

w input Width of each feature map.

The possible error values returned by this function and their meanings are listed below.

Return Value Meaning

CUDNN_STATUS_SUCCESS The object was set successfully.

CUDNN_STATUS_BAD_PARAM At least one of the parameters n,c,h,w was
negative or format has an invalid enumerant value
or dataType has an invalid enumerant value.

4.7. cudnnSetTensor4dDescriptorEx
cudnnStatus_t
cudnnSetTensor4dDescriptorEx(cudnnTensor4dDescriptor_t tensorDesc,
 cudnnDataType_t dataType,
 int n,
 int c,
 int h,
 int w,
 int nStride,
 int cStride,
 int hStride,
 int wStride)

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v6.5 | 14

This function initializes a previously created Tensor4D descriptor object, similarly to
cudnnSetTensor4dDescriptor but with the strides explicitly passed as parameters.
This can be used to lay out the 4D tensor in any order or simply to define gaps between
dimensions.

At present, some cuDNN routines have limited support for strides; for
example, wStride==1 is sometimes required. Those routines will return
CUDNN_STATUS_NOT_SUPPORTED if a Tensor4D object with an unsupported stride is
used. cudnnTransformTensor4d can be used to convert the data to a supported
layout.

Param In/out Meaning

tensorDesc input/
output

Handle to a previously created tensor descriptor.

datatype input Data type.

n input Number of images.

c input Number of feature maps per image.

h input Height of each feature map.

w input Width of each feature map.

nStride input Stride between two consecutive images.

cStride input Stride between two consecutive feature maps.

hStride input Stride between two consecutive rows.

wStride input Stride between two consecutive columns.

The possible error values returned by this function and their meanings are listed below.

Return Value Meaning

CUDNN_STATUS_SUCCESS The object was set successfully.

CUDNN_STATUS_BAD_PARAM At least one of the parameters n,c,h,w or
nStride,cStride,hStride,wStride is negative
or dataType has an invalid enumerant value.

4.8. cudnnGetTensor4dDescriptor
cudnnStatus_t
cudnnGetTensor4dDescriptor(cudnnTensor4dDescriptor_t tensorDesc,
 cudnnDataType_t *dataType,
 int *n,
 int *c,
 int *h,
 int *w,
 int *nStride,
 int *cStride,
 int *hStride,
 int *wStride)

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v6.5 | 15

This function queries the parameters of the previouly initialized Tensor4D descriptor
object.

Param In/out Meaning

tensorDesc input Handle to a previously insitialized tensor descriptor.

datatype output Data type.

n output Number of images.

c output Number of feature maps per image.

h output Height of each feature map.

w output Width of each feature map.

nStride output Stride between two consecutive images.

cStride output Stride between two consecutive feature maps.

hStride output Stride between two consecutive rows.

wStride output Stride between two consecutive columns.

The possible error values returned by this function and their meanings are listed below.

Return Value Meaning

CUDNN_STATUS_SUCCESS The operation succeeded.

4.9. cudnnDestroyTensor4dDescriptor
cudnnStatus_t cudnnDestroyTensor4dDescriptor(cudnnTensor4dDescriptor_t
 tensorDesc)

This function destroys a previously created Tensor4D descriptor object.

Return Value Meaning

CUDNN_STATUS_SUCCESS The object was destroyed successfully.

4.10. cudnnTransformTensor4d
cudnnStatus_t
cudnnTransformTensor4d(cudnnHandle_t handle,
 cudnnTensor4dDescriptor_t srcDesc,
 const void *srcData,
 cudnnTensor4dDescriptor_t destDesc,
 void *destData)

This function copies the data from one tensor to another tensor with a different
layout. Those descriptors need to have the same dimensions but not necessarily the
same strides. The input and output tensors must not overlap in any way (i.e., tensors
cannot be transformed in place). This function can be used to convert a tensor with an
unsupported format to a supported one.

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v6.5 | 16

Param In/out Meaning

handle input Handle to a previously created cuDNN context.

srcDesc input Handle to a previously initialized tensor descriptor.

srcData input Pointer to data of the tensor described by the srcDesc descriptor.

destDesc input Handle to a previously initialized tensor descriptor.

destData output Pointer to data of the tensor described by the destDesc descriptor.

The possible error values returned by this function and their meanings are listed below.

Return Value Meaning

CUDNN_STATUS_SUCCESS The function launched successfully.

CUDNN_STATUS_BAD_PARAM The dimensions n,c,h,w or the dataType of the
two tensor descriptors are different.

CUDNN_STATUS_EXECUTION_FAILED The function failed to launch on the GPU.

4.11. cudnnAddTensor4d
cudnnStatus_t
cudnnAddTensor4d(cudnnHandle_t handle,
 cudnnAddMode_t mode,
 const void *alpha,
 cudnnTensor4dDescriptor_t biasDesc,
 const void *biasData,
 cudnnTensor4dDescriptor_t srcDestDesc,
 void *srcDestData)

This function adds the scaled values of one tensor to another tensor. The mode parameter
can be used to select different ways of performing the scaled addition. The amount
of data described by the biasDesc descriptor must match exactly the amount of data
needed to perform the addition. Therefore, the following conditions must be met:

‣ Except for the CUDNN_ADD_SAME_C mode, the dimensions h,w of the two tensors
must match.

‣ In the case of CUDNN_ADD_IMAGE mode, the dimensions n,c of the bias tensor must
be 1.

‣ In the case of CUDNN_ADD_FEATURE_MAP mode, the dimension n of the bias tensor
must be 1 and the dimension c of the two tensors must match.

‣ In the case of CUDNN_ADD_FULL_TENSOR mode, the dimensions n,c of the two
tensors must match.

‣ In the case of CUDNN_ADD_SAME_C mode, the dimensions n,w,h of the bias tensor
must be 1 and the dimension c of the two tensors must match.

Param In/out Meaning

handle input Handle to a previously created cuDNN context.

biasDesc input Handle to a previously initialized tensor descriptor.

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v6.5 | 17

Param In/out Meaning

mode input Addition mode that describe how the addition is performed.

alpha input Scalar factor to be applied to every data element of the bias tensor before
it is added to the output tensor.

srcData input Pointer to data of the tensor described by the biasDesc descriptor.

srcDestDesc input/
output

Handle to a previously initialized tensor descriptor.

srcDestData input/
output

Pointer to data of the tensor described by the srcDestDesc descriptor.

The possible error values returned by this function and their meanings are listed below.

Return Value Meaning

CUDNN_STATUS_SUCCESS The function executed successfully.

CUDNN_STATUS_BAD_PARAM The dimensions n,c,h,w of the bias tensor refer
to an amount of data that is incompatible with the
mode parameter and the output tensor dimensions
or the dataType of the two tensor descriptors are
different.

CUDNN_STATUS_EXECUTION_FAILED The function failed to launch on the GPU.

4.12. cudnnCreateFilterDescriptor
cudnnStatus_t cudnnCreateFilterDescriptor(cudnnFilterDescriptor_t *filterDesc)

This function creates a filter descriptor object by allocating the memory needed to hold
its opaque structure,

Return Value Meaning

CUDNN_STATUS_SUCCESS The object was created successfully.

CUDNN_STATUS_ALLOC_FAILED The resources could not be allocated.

4.13. cudnnSetFilterDescriptor
cudnnStatus_t
cudnnSetFilterDescriptor(cudnnFilterDescriptor_t filterDesc,
 cudnnDataType_t dataType,
 int k,
 int c,
 int h,
 int w)

This function initializes a previously created filter descriptor object. Filters layout must
be contiguous in memory.

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v6.5 | 18

Param In/out Meaning

filterDesc input/
output

Handle to a previously created filter descriptor.

datatype input Data type.

k input Number of output feature maps.

c input Number of input feature maps.

h input Height of each filter.

w input Width of each filter.

The possible error values returned by this function and their meanings are listed below.

Return Value Meaning

CUDNN_STATUS_SUCCESS The object was set successfully.

CUDNN_STATUS_BAD_PARAM At least one of the parameters k,c,h,w is
negative or dataType has an invalid enumerant
value.

4.14. cudnnGetFilterDescriptor
cudnnStatus_t
cudnnGetFilterDescriptor(cudnnFilterDescriptor_t filterDesc,
 cudnnDataType_t *dataType,
 int *k,
 int *c,
 int *h,
 int *w)

This function queries the parameters of the previouly initialized filter descriptor object.

Param In/out Meaning

filterDesc input Handle to a previously created filter descriptor.

datatype output Data type.

k output Number of output feature maps.

c output Number of input feature maps.

h output Height of each filter.

w output Width of each filter.

The possible error values returned by this function and their meanings are listed below.

Return Value Meaning

CUDNN_STATUS_SUCCESS The object was set successfully.

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v6.5 | 19

4.15. cudnnDestroyFilterDescriptor
cudnnStatus_t cudnnDestroyFilterDescriptor(cudnnFilterdDescriptor_t filterDesc)

This function destroys a previously created Tensor4D descriptor object.

Return Value Meaning

CUDNN_STATUS_SUCCESS The object was destroyed successfully.

4.16. cudnnCreateConvolutionDescriptor
cudnnStatus_t cudnnCreateConvolutionDescriptor(cudnnConvolutionDescriptor_t
 *convDesc)

This function creates a convolution descriptor object by allocating the memory needed to
hold its opaque structure,

Return Value Meaning

CUDNN_STATUS_SUCCESS The object was created successfully.

CUDNN_STATUS_ALLOC_FAILED The resources could not be allocated.

4.17. cudnnSetConvolutionDescriptor
cudnnStatus_t
cudnnSetConvolutionDescriptor(cudnnConvolutionDescriptor_t convDesc,
 cudnnTensor4dDescriptor_t inputTensorDesc,
 cudnnFilterDescriptor_t filterDesc,
 int pad_h,
 int pad_w,
 int u,
 int v,
 int upscalex,
 int upscaley,
 cudnnConvolutionMode_t mode)

This function initializes a previously created convolution descriptor object, according
to an input tensor descriptor and a filter descriptor passed as parameter. This function
assumes that the tensor and filter descriptors corresponds to the formard convolution
path and checks if their settings are valid. That same convolution descriptor can be
reused in the backward path provided it corresponds to the same layer.

Param In/out Meaning

convDesc input/
output

Handle to a previously created convolution descriptor.

inputTensorDesc input Input tensor descriptor used for that layer on the forward path.

filterDesc input Filter descriptor used for that layer on the forward path.

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v6.5 | 20

Param In/out Meaning

pad_h input zero-padding height: number of rows of zeros implicitly concatenated
onto the top and onto the bottom of input images.

pad_w input zero-padding width: number of columns of zeros implicitly concatenated
onto the left and onto the right of input images.

u input Vertical filter stride.

v input Horizontal filter stride.

upscalex input Upscale the input in x-direction.

upscaley input Upscale the input in y-direction.

mode input Selects between CUDNN_CONVOLUTION and
CUDNN_CROSS_CORRELATION.

The possible error values returned by this function and their meanings are listed below.

Return Value Meaning

CUDNN_STATUS_SUCCESS The object was set successfully.

CUDNN_STATUS_BAD_PARAM At least one of the following conditions are met:

‣ One of the parameters u,v is negative.
‣ The dataType of the tensor and filter

descriptors differ or have invalid enumerant
values.

‣ The number of feature maps of the tensor
descriptor and the number of input feature
maps of the filter differ.

‣ The parameter mode has an invalid enumerant
value.

CUDNN_STATUS_NOT_SUPPORTED The parameter upscalex or upscaley is not 1.

4.18. cudnnSetConvolutionDescriptorEx
cudnnStatus_t
cudnnSetConvolutionDescriptorEx(cudnnConvolutionDescriptor_t convDesc,
 int n,
 int c,
 int h,
 int w,
 int k,
 int r,
 int s,
 int pad_h,
 int pad_w,
 int u,
 int v,
 int upscalex,
 int upscaley,
 cudnnConvolutionMode_t mode)

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v6.5 | 21

This function initializes a previously created convolution descriptor object. It is similar
to cudnnSetConvolutionDescriptor but every parameter of the convolution must be
passed explicitly.

Param In/out Meaning

convDesc input/
output

Handle to a previously created convolution descriptor.

n input Number of images.

c input Number of input feature maps.

h input Height of each input feature map.

w input Width of each input feature map.

k input Number of output feature maps.

r input Height of each filter.

s input Width of each filter.

pad_h input zero-padding height: number of rows of zeros implicitly concatenated onto
the top and onto the bottom of input images.

pad_w input zero-padding width: number of columns of zeros implicitly concatenated
onto the left and onto the right of input images.

u input Vertical filter stride.

v input Horizontal filter stride.

upscalex input Upscale the input in x-direction.

upscaley input Upscale the input in y-direction.

mode input Selects between CUDNN_CONVOLUTION and CUDNN_CROSS_CORRELATION.

The possible error values returned by this function and their meanings are listed below.

Return Value Meaning

CUDNN_STATUS_SUCCESS The object was set successfully.

CUDNN_STATUS_BAD_PARAM At least one of the following conditions are met:

‣ One of the parameters u,v is negative.
‣ The parameter mode has an invalid enumerant

value.

CUDNN_STATUS_NOT_SUPPORTED The parameter upscalex or upscaley is not 1.

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v6.5 | 22

4.19. cudnnGetOutputTensor4dDim
cudnnStatus_t
cudnnGetOutputTensor4dDim(const cudnnConvolutionDescriptor_t convDesc,
 cudnnConvolutionPath_t path,
 int *n,
 int *c,
 int *h,
 int *w)

This function returns the dimensions of a convolution's output, given the convolution
descriptor and the direction of the convolution. This function can help to setup the
output tensor and allocate the proper amount of memory prior to launch the actual
convolution.

Param In/out Meaning

convDesc input Handle to a previously created convolution descriptor.

path input Enumerant to specify the direction of the convolution.

n output Number of output images.

c output Number of output feature maps per image.

h output Height of each output feature map.

w output Width of each output feature map.

The possible error values returned by this function and their meanings are listed below.

Return Value Meaning

CUDNN_STATUS_BAD_PARAM The path parameter has an invalid enumerant
value.

CUDNN_STATUS_SUCCESS The object was set successfully.

4.20. cudnnDestroyFilterDescriptor
cudnnStatus_t cudnnDestroyConvolutionDescriptor(cudnnConvolutionDescriptor_t
 convDesc)

This function destroys a previously created convolution descriptor object.

Return Value Meaning

CUDNN_STATUS_SUCCESS The object was destroyed successfully.

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v6.5 | 23

4.21. cudnnConvolutionForward
cudnnStatus_t
cudnnConvolutionForward(cudnnHandle_t handle,
 cudnnTensor4dDescriptor_t srcDesc,
 const void *srcData,
 cudnnFilterDescriptor_t filterDesc,
 const void *filterData,
 cudnnConvolutionDescriptor_t convDesc,
 cudnnTensor4dDescriptor_t destDesc,
 void *destData,
 cudnnAccumulateResult_t accumulate)

This function executes convolutions or cross-correlations over src using the specified
filters, returning results in dest.

Param In/out Meaning

handle input Handle to a previously created cuDNN context.

srcDesc input Handle to a previously initialized tensor descriptor.

srcData input Data pointer to GPU memory associated with the tensor descriptor
srcDesc.

filterDesc input Handle to a previously initialized filter descriptor.

filterData input Data pointer to GPU memory associated with the filter descriptor
filterDesc.

convDesc input Previously initialized convolution descriptor.

destDesc input Handle to a previously initialized tensor descriptor.

destData input/
output

Data pointer to GPU memory associated with the tensor descriptor
destDesc that carries the result of the convolution.

accumulate input Enumerant that specifies whether the convolution accumulates with or
overwrites the output tensor.

The possible error values returned by this function and their meanings are listed below.

Return Value Meaning

CUDNN_STATUS_SUCCESS The operation was launched successfully.

CUDNN_STATUS_MAPPING_ERROR An error occured during the texture binding of the
filter data.

CUDNN_STATUS_EXECUTION_FAILED The function failed to launch on the GPU.

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v6.5 | 24

4.22. cudnnConvolutionBackwardBias
cudnnStatus_t
cudnnConvolutionBackwardBias(cudnnHandle_t handle,
 cudnnTensor4dDescriptor_t srcDesc,
 const void *srcData,
 cudnnTensor4dDescriptor_t destDesc,
 void *destData,
 cudnnAccumulateResult_t accumulate)

This function computes the convolution gradient with respect to the bias, which is the
sum of every element belonging to the same feature map across all of the images of the
input tensor. Therefore, the number of elements produced is equal to the number of
features maps of the input tensor.

Param In/out Meaning

handle input Handle to a previously created cuDNN context.

srcDesc input Handle to the previously initialized input tensor descriptor.

srcData input Data pointer to GPU memory associated with the tensor descriptor
srcDesc.

destDesc input Handle to the previously initialized output tensor descriptor.

destData output Data pointer to GPU memory associated with the output tensor descriptor
destDesc.

accumulate input Enumerant that specifies whether the convolution accumulates with or
overwrites the output tensor.

The possible error values returned by this function and their meanings are listed below.

Return Value Meaning

CUDNN_STATUS_SUCCESS The operation was launched successfully.

CUDNN_STATUS_BAD_PARAM At least one of the following conditions are met:

‣ One of the parameters n,h,w of the output
tensor is not 1.

‣ The numbers of feature maps of the input
tensor and output tensor differ.

‣ The dataType of the two tensor descriptors
are different.

CUDNN_STATUS_NOT_SUPPORTED At least one of the following conditions are met:

‣ The width stride of the input tensor is not 1.
‣ The height stride and the width of the input

tensor differ.
‣ The feature map stride of the output tensor is

not 1.

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v6.5 | 25

4.23. cudnnConvolutionBackwardFilter
cudnnStatus_t
cudnnConvolutionBackwardFilter(cudnnHandle_t handle,
 cudnnTensor4dDescriptor_t srcDesc,
 const void *srcData,
 cudnnTensor4dDescriptor_t diffDesc,
 const void *diffData,
 cudnnConvolutionDescriptor_t convDesc,
 cudnnFilterDescriptor_t gradDesc,
 void *gradData,
 cudnnAccumulateResult_t accumulate)

This function computes the convolution gradient with respect to the filter coefficients.

Param In/out Meaning

handle input Handle to a previously created cuDNN context.

srcDesc input Handle to a previously initialized tensor descriptor.

srcData input Data pointer to GPU memory associated with the tensor descriptor
srcDesc.

diffDesc input Handle to the previously initialized input differential tensor descriptor.

diffData input Data pointer to GPU memory associated with the input differential tensor
descriptor diffDesc.

convDesc input Previously initialized convolution descriptor.

gradDesc input Handle to a previously initialized filter descriptor.

gradData input/
output

Data pointer to GPU memory associated with the filter descriptor
gradDesc that carries the result.

accumulate input Enumerant that specifies whether the convolution accumulates with or
overwrites the output tensor.

The possible error values returned by this function and their meanings are listed below.

Return Value Meaning

CUDNN_STATUS_SUCCESS The operation was launched successfully.

CUDNN_STATUS_NOT_SUPPORTED The requested operation is not currently supported
in cuDNN. Your diffDesc is likely not in NCHW
format.

CUDNN_STATUS_MAPPING_ERROR An error occurs during the texture binding of the
filter data.

CUDNN_STATUS_EXECUTION_FAILED The function failed to launch on the GPU.

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v6.5 | 26

4.24. cudnnConvolutionBackwardData
cudnnStatus_t
cudnnConvolutionBackwardData(cudnnHandle_t handle,
 cudnnFilterDescriptor_t filterDesc,
 const void *filterData,
 cudnnTensor4dDescriptor_t diffDesc,
 const void *diffData,
 cudnnConvolutionDescriptor_t convDesc,
 cudnnTensor4dDescriptor_t gradDesc,
 void *gradData,
 cudnnAccumulateResult_t accumulate
);

This function computes the convolution gradient with respect to the ouput tensor.

Param In/out Meaning

handle input Handle to a previously created cuDNN context.

filterDesc input Handle to a previously initialized filter descriptor.

filterData input Data pointer to GPU memory associated with the filter descriptor
filterDesc.

diffDesc input Handle to the previously initialized input differential tensor descriptor.

diffData input Data pointer to GPU memory associated with the input differential tensor
descriptor diffDesc.

convDesc input Previously initialized convolution descriptor.

gradDesc input Handle to the previously initialized output tensor descriptor.

gradData input/
output

Data pointer to GPU memory associated with the output tensor descriptor
gradDesc that carries the result.

accumulate input Enumerant that specifies whether the convolution accumulates with or
overwrites the output tensor.

The possible error values returned by this function and their meanings are listed below.

Return Value Meaning

CUDNN_STATUS_SUCCESS The operation was launched successfully.

CUDNN_STATUS_NOT_SUPPORTED The requested operation is not currently supported
in cuDNN. Your diffDesc is likely not in NCHW
format.

CUDNN_STATUS_MAPPING_ERROR An error occurs during the texture binding of the
filter data or the input differential tensor data

CUDNN_STATUS_EXECUTION_FAILED The function failed to launch on the GPU.

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v6.5 | 27

4.25. cudnnSoftmaxForward
cudnnStatus_t
cudnnSoftmaxForward(cudnnHandle_t handle,
 cudnnSoftmaxAlgorithm_t algorithm,
 cudnnSoftmaxMode_t mode,
 cudnnTensor4dDescriptor_t srcDesc,
 const void *srcData,
 cudnnTensor4dDescriptor_t destDesc,
 void *destData)

This routine computes the softmax function.

Param In/out Meaning

handle input Handle to a previously created cuDNN context.

algorithm input Enumerant to specify the softmax algorithm.

mode input Enumerant to specify the softmax mode.

srcDesc input Handle to the previously initialized input tensor descriptor.

srcData input Data pointer to GPU memory associated with the tensor descriptor
srcDesc.

destDesc input Handle to the previously initialized output tensor descriptor.

destData output Data pointer to GPU memory associated with the output tensor descriptor
destDesc.

The possible error values returned by this function and their meanings are listed below.

Return Value Meaning

CUDNN_STATUS_SUCCESS The function launched successfully.

CUDNN_STATUS_BAD_PARAM At least one of the following conditions are met:

‣ The dimensions n,c,h,w of the input tensor
and output tensors differ.

‣ The datatype of the input tensor and output
tensors differ.

‣ The parameters algorithm or mode have an
invalid enumerant value.

CUDNN_STATUS_EXECUTION_FAILED The function failed to launch on the GPU.

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v6.5 | 28

4.26. cudnnSoftmaxBackward
cudnnStatus_t
cudnnSoftmaxBackward(cudnnHandle_t handle,
 cudnnSoftmaxAlgorithm_t algorithm,
 cudnnSoftmaxMode_t mode,
 cudnnTensor4dDescriptor_t srcDesc,
 const void *srcData,
 cudnnTensor4dDescriptor_t srcDiffDesc,
 const void *srcDiffData,
 cudnnTensor4dDescriptor_t destDiffDesc,
 void *destDiffData)

This routine computes the gradient of the softmax function.

Param In/out Meaning

handle input Handle to a previously created cuDNN context.

algorithm input Enumerant to specify the softmax algorithm.

mode input Enumerant to specify the softmax mode.

srcDesc input Handle to the previously initialized input tensor descriptor.

srcData input Data pointer to GPU memory associated with the tensor descriptor
srcDesc.

srcDiffDesc input Handle to the previously initialized input differential tensor descriptor.

srcDiffData input Data pointer to GPU memory associated with the tensor descriptor
srcDiffData.

destDiffDesc input Handle to the previously initialized output differential tensor descriptor.

destDiffData output Data pointer to GPU memory associated with the output tensor descriptor
destDiffDesc.

The possible error values returned by this function and their meanings are listed below.

Return Value Meaning

CUDNN_STATUS_SUCCESS The function launched successfully.

CUDNN_STATUS_BAD_PARAM At least one of the following conditions are met:

‣ The dimensions n,c,h,w of the srcDesc,
srcDiffDesc and destDiffDesc tensors
differ.

‣ The strides nStride, cStride, hStride,
wStride of the srcDesc and srcDiffDesc
tensors differ.

‣ The datatype of the three tensors differs.

CUDNN_STATUS_EXECUTION_FAILED The function failed to launch on the GPU.

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v6.5 | 29

4.27. cudnnCreatePoolingDescriptor
cudnnStatus_t cudnnCreatePoolingDescriptor(cudnnPoolingDescriptor_t*
 poolingDesc)

This function creates a pooling descriptor object by allocating the memory needed to
hold its opaque structure,

Return Value Meaning

CUDNN_STATUS_SUCCESS The object was created successfully.

CUDNN_STATUS_ALLOC_FAILED The resources could not be allocated.

4.28. cudnnSetPoolingDescriptor
cudnnStatus_t
cudnnSetPoolingDescriptor(cudnnPoolingDescriptor_t poolingDesc,
 cudnnPoolingMode_t mode,
 int windowHeight,
 int windowWidth,
 int verticalStride,
 int horizontalStride)

This function initializes a previously created pooling descriptor object.

Param In/out Meaning

poolingDesc input/
output

Handle to a previously created pooling descriptor.

mode input Enumerant to specify the pooling mode.

windowHeight input Height of the pooling window.

windowWidth input Width of the pooling window.

verticalStride input Pooling vertical stride.

horizontalStride input Pooling horizontal stride.

The possible error values returned by this function and their meanings are listed below.

Return Value Meaning

CUDNN_STATUS_SUCCESS The object was set successfully.

CUDNN_STATUS_BAD_PARAM At least one of the parameters windowHeight,
windowWidth, verticalStride,
horizontalStride is negative or mode has an
invalid enumerant value.

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v6.5 | 30

4.29. cudnnGetPoolingDescriptor
cudnnStatus_t
cudnnGetPoolingDescriptor(cudnnPoolingDescriptor_t poolingDesc,
 cudnnPoolingMode_t *mode,
 int *windowHeight,
 int *windowWidth,
 int *verticalStride,
 int *horizontalStride)

This function queries a previously created pooling descriptor object.

Param In/out Meaning

poolingDesc input Handle to a previously created pooling descriptor.

mode output Enumerant to specify the pooling mode.

windowHeight output Height of the pooling window.

windowWidth output Width of the pooling window.

verticalStride output Pooling vertical stride.

horizontalStride output Pooling horizontal stride.

The possible error values returned by this function and their meanings are listed below.

Return Value Meaning

CUDNN_STATUS_SUCCESS The object was set successfully.

4.30. cudnnDestroyPoolingDescriptor
cudnnStatus_t cudnnDestroyPoolingDescriptor(cudnnPoolingDescriptor_t
 poolingDesc)

This function destroys a previously created pooling descriptor object.

Return Value Meaning

CUDNN_STATUS_SUCCESS The object was destroyed successfully.

4.31. cudnnPoolingForward
cudnnStatus_t
cudnnPoolingForward(cudnnHandle_t handle,
 cudnnPoolingDescriptor_t poolingDesc,
 cudnnTensor4dDescriptor_t srcDesc,
 const void *srcData,
 cudnnTensor4dDescriptor_t destDesc,
 void *destData)

This function computes pooling of input values (i.e., the maximum or average of several
adjacent values) to produce an output with smaller height and/or width.

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v6.5 | 31

Param In/out Meaning

handle input Handle to a previously created cuDNN context.

poolingDesc input Handle to a previously initialized pooling descriptor.

srcDesc input Handle to the previously initialized input tensor descriptor.

srcData input Data pointer to GPU memory associated with the tensor descriptor
srcDesc.

destDesc input Handle to the previously initialized output tensor descriptor.

destData output Data pointer to GPU memory associated with the output tensor descriptor
destDesc.

The possible error values returned by this function and their meanings are listed below.

Return Value Meaning

CUDNN_STATUS_SUCCESS The function launched successfully.

CUDNN_STATUS_BAD_PARAM At least one of the following conditions are met:

‣ The dimensions n,c of the input tensor and
output tensors differ.

‣ The datatype of the input tensor and output
tensors differs.

CUDNN_STATUS_NOT_SUPPORTED The wStride of input tensor or output tensor is
not 1.

CUDNN_STATUS_EXECUTION_FAILED The function failed to launch on the GPU.

4.32. cudnnPoolingBackward
cudnnStatus_t
cudnnPoolingBackward(cudnnHandle_t handle,
 cudnnPoolingDescriptor_t poolingDesc,
 cudnnTensor4dDescriptor_t srcDesc,
 const void *srcData,
 cudnnTensor4dDescriptor_t srcDiffDesc,
 const void *srcDiffData,
 cudnnTensor4dDescriptor_t destDesc,
 const void *destData,
 cudnnTensor4dDescriptor_t destDiffDesc,
 void *destDiffData)

This function computes the gradient of a pooling operation.

Param In/out Meaning

handle input Handle to a previously created cuDNN context.

poolingDesc input Handle to the previously initialized pooling descriptor.

srcDesc input Handle to the previously initialized input tensor descriptor.

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v6.5 | 32

Param In/out Meaning

srcData input Data pointer to GPU memory associated with the tensor descriptor
srcDesc.

srcDiffDesc input Handle to the previously initialized input differential tensor descriptor.

srcDiffData input Data pointer to GPU memory associated with the tensor descriptor
srcDiffData.

destDesc input Handle to the previously initialized output tensor descriptor.

destData input Data pointer to GPU memory associated with the output tensor descriptor
destDesc.

destDiffDesc input Handle to the previously initialized output differential tensor descriptor.

destDiffData output Data pointer to GPU memory associated with the output tensor descriptor
destDiffDesc.

The possible error values returned by this function and their meanings are listed below.

Return Value Meaning

CUDNN_STATUS_SUCCESS The function launched successfully.

CUDNN_STATUS_BAD_PARAM At least one of the following conditions are met:

‣ The dimensions n,c,h,w of the srcDesc and
srcDiffDesc tensors differ.

‣ The strides nStride, cStride, hStride,
wStride of the srcDesc and srcDiffDesc
tensors differ.

‣ The dimensions n,c,h,w of the destDesc
and destDiffDesc tensors differ.

‣ The strides nStride, cStride,
hStride, wStride of the destDesc and
destDiffDesc tensors differ.

‣ The datatype of the four tensors differ.

CUDNN_STATUS_NOT_SUPPORTED The wStride of input tensor or output tensor is
not 1.

CUDNN_STATUS_EXECUTION_FAILED The function failed to launch on the GPU.

4.33. cudnnActivationForward
cudnnStatus_t
cudnnActivationForward(cudnnHandle_t handle,
 cudnnActivationMode_t mode,
 cudnnTensor4dDescriptor_t srcDesc,
 const void *srcData,
 cudnnTensor4dDescriptor_t destDesc,
 void *destData)

This routine applies a specified neuron activation function element-wise over each input
value.

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v6.5 | 33

Param In/out Meaning

handle input Handle to a previously created cuDNN context.

mode input Enumerant to specify the activation mode.

srcDesc input Handle to the previously initialized input tensor descriptor.

srcData input Data pointer to GPU memory associated with the tensor descriptor
srcDesc.

destDesc input Handle to the previously initialized output tensor descriptor.

destData output Data pointer to GPU memory associated with the output tensor descriptor
destDesc.

The possible error values returned by this function and their meanings are listed below.

Return Value Meaning

CUDNN_STATUS_SUCCESS The function launched successfully.

CUDNN_STATUS_BAD_PARAM The parameter mode has an invalid enumerant
value.

CUDNN_STATUS_NOT_SUPPORTED At least one of the following conditions are met:

‣ The dimensions n,c,h,w of the input tensor
and output tensors differ.

‣ The datatype of the input tensor and output
tensors differs.

CUDNN_STATUS_EXECUTION_FAILED The function failed to launch on the GPU.

4.34. cudnnActivationBackward
cudnnStatus_t
cudnnActivationBackward(cudnnHandle_t handle,
 cudnnActivationMode_t mode,
 cudnnTensor4dDescriptor_t srcDesc,
 const void *srcData,
 cudnnTensor4dDescriptor_t srcDiffDesc,
 const void *srcDiffData,
 cudnnTensor4dDescriptor_t destDesc,
 const void *destData,
 cudnnTensor4dDescriptor_t destDiffDesc,
 void *destDiffData)

This routine computes the gradient of a neuron activation function.

Param In/out Meaning

handle input Handle to a previously created cuDNN context.

mode input Enumerant to specify the activation mode.

srcDesc input Handle to the previously initialized input tensor descriptor.

cuDNN API Reference

www.nvidia.com
cuDNN Library DU-06702-001_v6.5 | 34

Param In/out Meaning

srcData input Data pointer to GPU memory associated with the tensor descriptor
srcDesc.

srcDiffDesc input Handle to the previously initialized input differential tensor descriptor.

srcDiffData input Data pointer to GPU memory associated with the tensor descriptor
srcDiffData.

destDesc input Handle to the previously initialized output tensor descriptor.

destData input Data pointer to GPU memory associated with the output tensor descriptor
destDesc.

destDiffDesc input Handle to the previously initialized output differential tensor descriptor.

destDiffData output Data pointer to GPU memory associated with the output tensor descriptor
destDiffDesc.

The possible error values returned by this function and their meanings are listed below.

Return Value Meaning

CUDNN_STATUS_SUCCESS The function launched successfully.

CUDNN_STATUS_BAD_PARAM The parameter mode has an invalid enumerant
value.

CUDNN_STATUS_NOT_SUPPORTED At least one of the following conditions are met:

‣ The dimensions n,c,h,w of the four tensors
differ.

‣ The strides nStride, cStride, hStride,
wStride of the input tensor and the input
differential tensor differ.

‣ The strides nStride, cStride, hStride,
wStride of the output tensor and the output
differential tensor differ.

‣ The datatype of the four tensors differs.

CUDNN_STATUS_EXECUTION_FAILED The function failed to launch on the GPU.

www.nvidia.com
cuDNN Library DU-06702-001_v6.5 | 35

Chapter 5.
ACKNOWLEDGMENTS

Some of the cuDNN library routines were derived from code developed by the
University of Tennessee and are subject to the Modified Berkeley Software Distribution
License as follows:
Copyright (c) 2010 The University of Tennessee.

All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
 * Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
 * Redistributions in binary form must reproduce the above
 copyright notice, this list of conditions and the following
 disclaimer listed in this license in the documentation and/or
 other materials provided with the distribution.
 * Neither the name of the copyright holders nor the names of its
 contributors may be used to endorse or promote products derived
 from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY,
"MATERIALS") ARE BEING PROVIDED "AS IS." NVIDIA MAKES NO WARRANTIES,
EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF
NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR
PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA
Corporation assumes no responsibility for the consequences of use of such
information or for any infringement of patents or other rights of third parties
that may result from its use. No license is granted by implication of otherwise
under any patent rights of NVIDIA Corporation. Specifications mentioned in this
publication are subject to change without notice. This publication supersedes and
replaces all other information previously supplied. NVIDIA Corporation products
are not authorized as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA
Corporation in the U.S. and other countries. Other company and product names
may be trademarks of the respective companies with which they are associated.

Copyright

© 2007-2014 NVIDIA Corporation. All rights reserved.

www.nvidia.com

	Introduction
	General Description
	2.1. Programming Model
	2.2. Thread Safety
	2.3. Reproducibility
	2.4. Requirements

	cuDNN Datatypes Reference
	3.1. cudnnHandle_t
	3.2. cudnnStatus_t
	3.3. cudnnTensor4dDescriptor_t
	3.4. cudnnFilterDescriptor_t
	3.5. cudnnConvolutionDescriptor_t
	3.6. cudnnPoolingDescriptor_t
	3.7. cudnnDataType_t
	3.8. cudnnTensorFormat_t
	3.9. cudnnAddMode_t
	3.10. cudnnConvolutionMode_t
	3.11. cudnnConvolutionPath_t
	3.12. cudnnAccumulateResult_t
	3.13. cudnnSoftmaxAlgorithm_t
	3.14. cudnnSoftmaxMode_t
	3.15. cudnnPoolingMode_t
	3.16. cudnnActivationMode_t
	3.17. cudnnDataType_t

	cuDNN API Reference
	4.1. cudnnCreate
	4.2. cudnnDestroy
	4.3. cudnnSetStream
	4.4. cudnnGetStream
	4.5. cudnnCreateTensor4dDescriptor
	4.6. cudnnSetTensor4dDescriptor
	4.7. cudnnSetTensor4dDescriptorEx
	4.8. cudnnGetTensor4dDescriptor
	4.9. cudnnDestroyTensor4dDescriptor
	4.10. cudnnTransformTensor4d
	4.11. cudnnAddTensor4d
	4.12. cudnnCreateFilterDescriptor
	4.13. cudnnSetFilterDescriptor
	4.14. cudnnGetFilterDescriptor
	4.15. cudnnDestroyFilterDescriptor
	4.16. cudnnCreateConvolutionDescriptor
	4.17. cudnnSetConvolutionDescriptor
	4.18. cudnnSetConvolutionDescriptorEx
	4.19. cudnnGetOutputTensor4dDim
	4.20. cudnnDestroyFilterDescriptor
	4.21. cudnnConvolutionForward
	4.22. cudnnConvolutionBackwardBias
	4.23. cudnnConvolutionBackwardFilter
	4.24. cudnnConvolutionBackwardData
	4.25. cudnnSoftmaxForward
	4.26. cudnnSoftmaxBackward
	4.27. cudnnCreatePoolingDescriptor
	4.28. cudnnSetPoolingDescriptor
	4.29. cudnnGetPoolingDescriptor
	4.30. cudnnDestroyPoolingDescriptor
	4.31. cudnnPoolingForward
	4.32. cudnnPoolingBackward
	4.33. cudnnActivationForward
	4.34. cudnnActivationBackward

	Acknowledgments

